Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
M
MLAir
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
76
Issues
76
List
Boards
Labels
Service Desk
Milestones
Merge Requests
1
Merge Requests
1
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Operations
Operations
Metrics
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
toar
MLAir
Commits
c3a22383
Commit
c3a22383
authored
Nov 04, 2020
by
lukas leufen
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
new tests implemented
parent
25db784d
Pipeline
#50920
passed with stages
in 7 minutes and 20 seconds
Changes
2
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
123 additions
and
1 deletion
+123
-1
test/test_configuration/test_defaults.py
test/test_configuration/test_defaults.py
+73
-0
test/test_statistics.py
test/test_statistics.py
+50
-1
No files found.
test/test_configuration/test_defaults.py
0 → 100644
View file @
c3a22383
from
mlair.configuration.defaults
import
*
class
TestGetDefaults
:
def
test_get_defaults
(
self
):
defaults
=
get_defaults
()
assert
isinstance
(
defaults
,
dict
)
assert
all
(
map
(
lambda
k
:
k
in
defaults
.
keys
(),
[
"DEFAULT_STATIONS"
,
"DEFAULT_BATCH_SIZE"
,
"DEFAULT_PLOT_LIST"
]))
assert
all
(
map
(
lambda
x
:
x
.
startswith
(
"DEFAULT"
),
defaults
.
keys
()))
class
TestAllDefaults
:
def
test_training_parameters
(
self
):
assert
DEFAULT_CREATE_NEW_MODEL
is
True
assert
DEFAULT_TRAIN_MODEL
is
True
assert
DEFAULT_FRACTION_OF_TRAINING
==
0.8
assert
DEFAULT_EXTREME_VALUES
is
None
assert
DEFAULT_EXTREMES_ON_RIGHT_TAIL_ONLY
is
False
assert
DEFAULT_PERMUTE_DATA
is
False
assert
DEFAULT_BATCH_SIZE
==
int
(
256
*
2
)
assert
DEFAULT_EPOCHS
==
20
def
test_data_handler_parameters
(
self
):
assert
DEFAULT_STATIONS
==
[
'DEBW107'
,
'DEBY081'
,
'DEBW013'
,
'DEBW076'
,
'DEBW087'
]
assert
DEFAULT_VAR_ALL_DICT
==
{
'o3'
:
'dma8eu'
,
'relhum'
:
'average_values'
,
'temp'
:
'maximum'
,
'u'
:
'average_values'
,
'v'
:
'average_values'
,
'no'
:
'dma8eu'
,
'no2'
:
'dma8eu'
,
'cloudcover'
:
'average_values'
,
'pblheight'
:
'maximum'
}
assert
DEFAULT_NETWORK
==
"AIRBASE"
assert
DEFAULT_STATION_TYPE
==
"background"
assert
DEFAULT_VARIABLES
==
DEFAULT_VAR_ALL_DICT
.
keys
()
assert
DEFAULT_START
==
"1997-01-01"
assert
DEFAULT_END
==
"2017-12-31"
assert
DEFAULT_WINDOW_HISTORY_SIZE
==
13
assert
DEFAULT_OVERWRITE_LOCAL_DATA
is
False
assert
isinstance
(
DEFAULT_TRANSFORMATION
,
TransformationClass
)
assert
DEFAULT_TRANSFORMATION
.
inputs
.
transform_method
==
"standardise"
assert
DEFAULT_TRANSFORMATION
.
targets
.
transform_method
==
"standardise"
assert
DEFAULT_TARGET_VAR
==
"o3"
assert
DEFAULT_TARGET_DIM
==
"variables"
assert
DEFAULT_WINDOW_LEAD_TIME
==
3
assert
DEFAULT_DIMENSIONS
==
{
"new_index"
:
[
"datetime"
,
"Stations"
]}
assert
DEFAULT_TIME_DIM
==
"datetime"
assert
DEFAULT_INTERPOLATION_METHOD
==
"linear"
assert
DEFAULT_INTERPOLATION_LIMIT
==
1
def
test_subset_parameters
(
self
):
assert
DEFAULT_TRAIN_START
==
"1997-01-01"
assert
DEFAULT_TRAIN_END
==
"2007-12-31"
assert
DEFAULT_TRAIN_MIN_LENGTH
==
90
assert
DEFAULT_VAL_START
==
"2008-01-01"
assert
DEFAULT_VAL_END
==
"2009-12-31"
assert
DEFAULT_VAL_MIN_LENGTH
==
90
assert
DEFAULT_TEST_START
==
"2010-01-01"
assert
DEFAULT_TEST_END
==
"2017-12-31"
assert
DEFAULT_TEST_MIN_LENGTH
==
90
assert
DEFAULT_TRAIN_VAL_MIN_LENGTH
==
180
assert
DEFAULT_USE_ALL_STATIONS_ON_ALL_DATA_SETS
is
True
def
test_hpc_parameters
(
self
):
assert
DEFAULT_HPC_HOST_LIST
==
[
"jw"
,
"hdfmlc"
]
assert
DEFAULT_HPC_LOGIN_LIST
==
[
"ju"
,
"hdfmll"
]
def
test_postprocessing_parameters
(
self
):
assert
DEFAULT_EVALUATE_BOOTSTRAPS
is
True
assert
DEFAULT_CREATE_NEW_BOOTSTRAPS
is
False
assert
DEFAULT_NUMBER_OF_BOOTSTRAPS
==
20
assert
DEFAULT_PLOT_LIST
==
[
"PlotMonthlySummary"
,
"PlotStationMap"
,
"PlotClimatologicalSkillScore"
,
"PlotTimeSeries"
,
"PlotCompetitiveSkillScore"
,
"PlotBootstrapSkillScore"
,
"PlotConditionalQuantiles"
,
"PlotAvailability"
]
test/test_statistics.py
View file @
c3a22383
...
...
@@ -3,7 +3,9 @@ import pandas as pd
import
pytest
import
xarray
as
xr
from
mlair.helpers.statistics
import
standardise
,
standardise_inverse
,
standardise_apply
,
centre
,
centre_inverse
,
centre_apply
,
\
from
mlair.helpers.statistics
import
DataClass
,
TransformationClass
from
mlair.helpers.statistics
import
standardise
,
standardise_inverse
,
standardise_apply
,
centre
,
centre_inverse
,
\
centre_apply
,
\
apply_inverse_transformation
lazy
=
pytest
.
lazy_fixture
...
...
@@ -113,3 +115,50 @@ class TestCentre:
data
=
centre_apply
(
data_orig
,
mean
)
mean_expected
=
np
.
array
([
2
,
-
5
,
10
])
-
np
.
array
([
2
,
10
,
3
])
assert
np
.
testing
.
assert_almost_equal
(
data
.
mean
(
dim
),
mean_expected
,
decimal
=
1
)
is
None
class
TestDataClass
:
def
test_init
(
self
):
dc
=
DataClass
()
assert
all
([
obj
is
None
for
obj
in
[
dc
.
data
,
dc
.
mean
,
dc
.
std
,
dc
.
max
,
dc
.
min
,
dc
.
transform_method
,
dc
.
_method
]])
def
test_init_values
(
self
):
dc
=
DataClass
(
data
=
12
,
mean
=
2
,
std
=
"test"
,
max
=
23.4
,
min
=
np
.
array
([
3
]),
transform_method
=
"f"
)
assert
dc
.
data
==
12
assert
dc
.
mean
==
2
assert
dc
.
std
==
"test"
assert
dc
.
max
==
23.4
assert
np
.
testing
.
assert_array_equal
(
dc
.
min
,
np
.
array
([
3
]))
is
None
assert
dc
.
transform_method
==
"f"
assert
dc
.
_method
is
None
def
test_as_dict
(
self
):
dc
=
DataClass
(
std
=
23
)
dc
.
_method
=
"f(x)"
assert
dc
.
as_dict
()
==
{
"data"
:
None
,
"mean"
:
None
,
"std"
:
23
,
"max"
:
None
,
"min"
:
None
,
"transform_method"
:
None
}
class
TestTransformationClass
:
def
test_init
(
self
):
tc
=
TransformationClass
()
assert
hasattr
(
tc
,
"inputs"
)
assert
isinstance
(
tc
.
inputs
,
DataClass
)
assert
hasattr
(
tc
,
"targets"
)
assert
isinstance
(
tc
.
targets
,
DataClass
)
assert
tc
.
inputs
.
mean
is
None
assert
tc
.
targets
.
std
is
None
def
test_init_values
(
self
):
tc
=
TransformationClass
(
inputs_mean
=
1
,
inputs_std
=
2
,
inputs_method
=
"f"
,
targets_mean
=
3
,
targets_std
=
4
,
targets_method
=
"g"
)
assert
tc
.
inputs
.
mean
==
1
assert
tc
.
inputs
.
std
==
2
assert
tc
.
inputs
.
transform_method
==
"f"
assert
tc
.
inputs
.
max
is
None
assert
tc
.
targets
.
mean
==
3
assert
tc
.
targets
.
std
==
4
assert
tc
.
targets
.
transform_method
==
"g"
assert
tc
.
inputs
.
min
is
None
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment