AgentsSourcesManager.cpp 14.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10
/*
 * AgentsSourcesManager.cpp
 *
 *  Created on: 14.04.2015
 *      Author: piccolo
 */

#include "AgentsSourcesManager.h"
#include "Pedestrian.h"
#include "AgentsQueue.h"
11 12
#include "StartDistribution.h"
#include "PedDistributor.h"
13
#include "AgentsSource.h"
14 15
#include "../voronoi/VoronoiDiagramGenerator.h"
#include "../geometry/Building.h"
16 17
#include "../geometry/Point.h"

18

19
#include "../mpi/LCGrid.h"
20 21 22 23 24 25
#include <iostream>
#include <thread>
#include <chrono>

using namespace std;

26 27
bool AgentsSourcesManager::_isCompleted=false;

28 29 30 31 32 33 34 35
AgentsSourcesManager::AgentsSourcesManager()
{
}

AgentsSourcesManager::~AgentsSourcesManager()
{
}

36
void AgentsSourcesManager::operator()()
37
{
38
     Log->Write("INFO:\tStarting agent manager thread");
39 40 41 42 43 44 45 46 47 48 49 50 51

     //Generate all agents required for the complete simulation
     //It might be more efficient to generate at each frequency step
     for (const auto& src : _sources)
     {
          src->GenerateAgentsAndAddToPool(src->GetMaxAgents(), _building);
          cout<<"generation: "<<src->GetPoolSize()<<endl;
     }

     //first call ignoring the return value
     ProcessAllSources();

     //the loop is updated each x second.
52
     //it might be better to use a timer
53
     _isCompleted = false;
54 55
     bool finished = false;
     long updateFrequency = 5;     // 1 second
56 57
     do
     {
58 59
          int current_time = Pedestrian::GetGlobalTime();

60 61
          //first step
          //if(current_time==0){
62
          //finished=ProcessAllSources();
63 64 65
          //     ProcessAllSources();
          //     //cout<<"here:"<<endl; exit(0);
          //}
66 67
          if ((current_time != _lastUpdateTime)
                    && ((current_time % updateFrequency) == 0))
68
          {
69
               //cout<<"TIME:"<<current_time<<endl;
70
               finished=ProcessAllSources();
71
               _lastUpdateTime = current_time;
72
               cout << "source size: " << _sources.size() << endl;
73
          }
74
          //wait some time
75 76
          //cout<<"sleepinp..."<<endl;
          //std::this_thread::sleep_for(std::chrono::milliseconds(1));
77
     } while (!finished);
78
     Log->Write("INFO:\tTerminating agent manager thread");
79
     _isCompleted = true;
80
}
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
void AgentsSourcesManager::Run()
{
     Log->Write("INFO:\tStarting agent manager thread");


     //Generate all agents required for the complete simulation
     //It might be more efficient to generate at each frequency step
     for (const auto& src : _sources)
     {
          src->GenerateAgentsAndAddToPool(src->GetMaxAgents(), _building);
          cout<<"generation: "<<src->GetPoolSize()<<endl;
     }

     //first call ignoring the return value
     ProcessAllSources();

     //the loop is updated each x second.
     //it might be better to use a timer
     _isCompleted = false;
     bool finished = false;
     long updateFrequency = 5;     // 1 second
     do
     {
          int current_time = Pedestrian::GetGlobalTime();

          //first step
          //if(current_time==0){
109
          //finished=ProcessAllSources();
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
          //     ProcessAllSources();
          //     //cout<<"here:"<<endl; exit(0);
          //}
          if ((current_time != _lastUpdateTime)
                    && ((current_time % updateFrequency) == 0))
          {
               //cout<<"TIME:"<<current_time<<endl;
               finished=ProcessAllSources();
               _lastUpdateTime = current_time;
               cout << "source size: " << _sources.size() << endl;
          }
          //wait some time
          //cout<<"sleepinp..."<<endl;
          //std::this_thread::sleep_for(std::chrono::milliseconds(1));
     } while (!finished);
     Log->Write("INFO:\tTerminating agent manager thread");
Ulrich Kemloh's avatar
Ulrich Kemloh committed
126
     _isCompleted = true;//exit(0);
127 128 129
}

bool AgentsSourcesManager::ProcessAllSources() const
130 131
{
     bool empty=true;
132
     //cout<<"src size: "<<_sources.size()<<endl;
133 134
     for (const auto& src : _sources)
     {
135
          //cout<<"size: "<<src->GetPoolSize()<<endl;//exit(0);
136 137 138
          if (src->GetPoolSize())
          {
               vector<Pedestrian*> peds;
139
               src->RemoveAgentsFromPool(peds,src->GetFrequency());
140

141
               ComputeBestPositionRandom(src.get(), peds);
142 143 144
               //todo: compute the optimal position for insertion using voronoi
               //for (auto&& ped : peds)
               //{
145 146
                    //ComputeBestPositionVoronoi(src.get(), ped);
                    //ped->Dump(ped->GetID());
147
               //}
148 149 150 151 152 153
               AgentsQueue::Add(peds);
               empty = false;
          }
          //src->Dump();//exit(0);
     }
     return empty;
154 155
}

156
void AgentsSourcesManager::ComputeBestPositionVoronoi(AgentsSource* src,
157
          Pedestrian* agent) const
158
{
159 160 161 162 163
     auto dist = src->GetStartDistribution();
     double bounds[4];
     dist->Getbounds(bounds);
     int roomID = dist->GetRoomId();
     int subroomID = dist->GetSubroomID();
164 165 166

     //Get all pedestrians in that location
     vector<Pedestrian*> peds;
167
     _building->GetPedestrians(roomID, subroomID, peds);
168

169
     //filter the points that are not within the boundaries
170 171 172 173 174 175 176 177 178
     for (auto&& iter = peds.begin(); iter != peds.end();)
     {
          const Point& pos = (*iter)->GetPos();
          if ((bounds[0] <= pos._x && pos._x <= bounds[1])
                    && (bounds[1] <= pos._y && pos._y <= bounds[2]))
          {
               iter = peds.erase(iter);
               cout << "removing..." << endl;
               exit(0);
179
          } else
180 181 182 183 184 185 186 187
          {
               ++iter;
          }
     }

     //special case with 1, 2 or only three pedestrians in the area
     if (peds.size() < 3)
     {
188 189
          //TODO/random position in the area
          return;
190 191

     }
192
     // compute the cells and cut with the bounds
193
     const int count = peds.size();
194 195
     float* xValues = new float[count];
     float* yValues = new float[count];
196 197
     //float xValues[count];
     //float yValues[count];
198

199
     for (int i = 0; i < count; i++)
200
     {
201 202
          xValues[i] = peds[i]->GetPos()._x;
          yValues[i] = peds[i]->GetPos()._y;
203 204 205
     }

     VoronoiDiagramGenerator vdg;
206 207
     vdg.generateVoronoi(xValues, yValues, count, bounds[0], bounds[1],
               bounds[2], bounds[3], 3);
208 209 210 211
     vdg.resetIterator();
     vdg.resetVerticesIterator();

     printf("\n------vertices---------\n");
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
     //collect the positions
     vector<Point> positions;
     float x1, y1;
     while (vdg.getNextVertex(x1, y1))
     {
          printf("GOT Point (%f,%f)\n", x1, y1);
          positions.push_back(Point(x1, y1));
     }

     //look for the biggest spot
     map<double, Point> map_dist_to_position;

     for (auto&& pos : positions)
     {
          double min_dist = FLT_MAX;

          for (auto&& ped : peds)
          {
               double dist = (pos - ped->GetPos()).NormSquare();
               if (dist < min_dist)
               {
                    min_dist = dist;
               }
          }
          map_dist_to_position[min_dist] = pos;
     }

     //list the result
     for (auto&& mp : map_dist_to_position)
241
     {
242
          cout << "dist: " << mp.first << " pos: " << mp.second.toString()
243
                              << endl;
244
          //agent->SetPos(mp.second, true);
245 246
     }

247 248 249 250 251 252 253
     //the elements are ordered.
     // so the last one has the largest distance
     if (!map_dist_to_position.empty())
     {
          agent->SetPos(map_dist_to_position.rbegin()->second, true);
          cout << "position:" << agent->GetPos().toString() << endl;
          //exit(0);
254

255
     } else
256 257 258
     {
          cout << "position not set:" << endl;
          cout << "size: " << map_dist_to_position.size() << endl;
259
          cout << " for " << peds.size() << " pedestrians" << endl;
260 261
          exit(0);
     }
262 263 264 265 266 267 268 269
     //exit(0);
     // float x1,y1,x2,y2;
     //while(vdg.getNext(x1,y1,x2,y2))
     //{
     //     printf("GOT Line (%f,%f)->(%f,%f)\n",x1,y1,x2, y2);
     //
     //}
     //compute the best position
270
     //exit(0);
271 272
}

273
void AgentsSourcesManager::ComputeBestPositionRandom(AgentsSource* src,
274
          std::vector<Pedestrian*>& peds) const
275 276 277
{

     //generate the agents with default positions
278 279 280 281 282
     auto dist = src->GetStartDistribution();
     auto subroom = _building->GetRoom(dist->GetRoomId())->GetSubRoom(
               dist->GetSubroomID());
     vector<Point> positions = PedDistributor::PossiblePositions(*subroom);
     double bounds[4] = { 0, 0, 0, 0 };
283 284
     dist->Getbounds(bounds);

285 286
     vector<Point> extra_positions;

287
     for (auto& ped : peds)
288
     {
289 290 291
          //need to be called at each iteration
          SortPositionByDensity(positions, extra_positions);

292 293 294
          int index = -1;

          //in the case a range was specified
295
          //just take the first element
296
          for (unsigned int a = 0; a < positions.size(); a++)
297
          {
298 299 300
               Point pos = positions[a];
               if ((bounds[0] <= pos._x) && (pos._x <= bounds[1])
                         && (bounds[2] <= pos._y) && (pos._y < bounds[3]))
301
               {
302
                    index = a;
303 304 305
                    break;
               }
          }
306
          if (index == -1)
307
          {
308
               if (positions.size())
309
               {
310
                    Log->Write(
311
                              "ERROR:\t AgentSourceManager Cannot distribute pedestrians in the mentioned area [%0.2f,%0.2f,%0.2f,%0.2f]",
312
                              bounds[0], bounds[1], bounds[2], bounds[3]);
313 314
                    Log->Write("ERROR:\t Specifying a subroom_id might help");
               }
315 316
          }
          else
317 318
          {
               const Point& pos = positions[index];
319
               extra_positions.push_back(pos);
320
               ped->SetPos(pos, true); //true for the initial position
321 322
               positions.erase(positions.begin() + index);

323
               //at this point we have a position
324 325 326
               //so we can adjust the velocity
               //AdjustVelocityUsingWeidmann(ped);
               AdjustVelocityByNeighbour(ped);
327 328 329
          }
     }
}
330

331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
void AgentsSourcesManager::AdjustVelocityByNeighbour(Pedestrian* ped) const
{
     //get the density
     vector<Pedestrian*> neighbours;
     _building->GetGrid()->GetNeighbourhood(ped,neighbours);

     double speed=0.0;
     double radius_square=0.56*0.56;//corresponding to an area of 1m3
     int count=0;

     for(const auto& p: neighbours)
     {
          //only pedes in a sepcific rance
          if( (ped->GetPos()-p->GetPos()).NormSquare()<=radius_square)
          {
               //only peds with the same destination
               if(ped->GetExitIndex()==p->GetExitIndex())
               {
                    double dist1=ped->GetDistanceToNextTarget();
                    double dist2=p->GetDistanceToNextTarget();
                    //only peds in front of me
                    if(dist2<dist1)
                    {
                         speed+=p->GetV().Norm();
                         count++;
                    }
               }
          }

     }
     //mean speed
     if(count==0)
     {
          speed=ped->GetV0Norm();
     }
     else
     {
          speed=speed/count;
     }

     if(ped->FindRoute()!=-1)
     {
          //get the next destination point
          Point v =(ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
          v=v*speed;
          ped->SetV(v);
     }
     else
     {
          Log->Write("ERROR:\t no route could be found for agent [%d] going to [%d]",ped->GetID(),ped->GetFinalDestination());
          //that will be most probably be fixed in the next computation step.
          // so do not abort
     }

}

387 388 389 390 391 392
void AgentsSourcesManager::AdjustVelocityUsingWeidmann(Pedestrian* ped) const
{
     //get the density
     vector<Pedestrian*> neighbours;
     _building->GetGrid()->GetNeighbourhood(ped,neighbours);

393
     //density in pers per m2
394 395
     double density = 1.0;
     //radius corresponding to a surface of 1m2
396
     //double radius_square=0.564*0.564;
397
     double radius_square=1.0;
398

399 400
     for(const auto& p: neighbours)
     {
401
          if( (ped->GetPos()-p->GetPos()).NormSquare()<=radius_square)
402 403
               density+=1.0;
     }
404 405
     density=density/(radius_square*M_PI);

406 407
     //get the velocity
     double density_max=5.4;
408

409 410 411 412 413 414
     //speed from taken from weidmann FD
     double speed=1.34*(1-exp(-1.913*(1.0/density-1.0/density_max)));
     if(speed>=ped->GetV0Norm())
     {
          speed=ped->GetV0Norm();
     }
415

416 417
     //set the velocity vector
     if(ped->FindRoute()!=-1)
418 419 420 421 422
     {
          //get the next destination point
          Point v =(ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
          v=v*speed;
          ped->SetV(v);
423
          //cout<<"density: "<<density<<endl;
424 425 426 427
     }
     else
     {
          Log->Write("ERROR:\t no route could be found for agent [%d] going to [%d]",ped->GetID(),ped->GetFinalDestination());
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
          //that will be most probably be fixed in the next computation step.
          // so do not abort
     }

}

void AgentsSourcesManager::SortPositionByDensity(std::vector<Point>& positions, std::vector<Point>& extra_positions) const
{
     std::multimap<double,Point> density2pt;
     //std::map<double,Point> density2pt;

     for(auto&& pt:positions)
     {
          vector<Pedestrian*> neighbours;
          _building->GetGrid()->GetNeighbourhood(pt,neighbours);
          //density in pers per m2
          double density = 0.0;
          //double radius_square=0.56*0.56;
          double radius_square=0.40*0.40;

          for(const auto& p: neighbours)
          {
               if( (pt-p->GetPos()).NormSquare()<=radius_square)
                    density+=1.0;
          }

          //consider the extra positions
          for(const auto& ptx: extra_positions)
          {
               if( (ptx-pt).NormSquare()<=radius_square)
                    density+=1.0;
          }
          density=density/(radius_square*M_PI);

          density2pt.insert(std::pair<double,Point>(density,pt));

     }

     //cout<<"------------------"<<positions.size()<<"-------"<<endl;
     positions.clear();
     for(auto&& d: density2pt)
     {
          positions.push_back(d.second);
          //     printf("density [%lf, %s]\n",d.first, d.second.toString().c_str());
472
     }
473 474

}
475 476 477 478 479 480 481 482 483 484 485


void AgentsSourcesManager::GenerateAgents()
{

     for (const auto& src : _sources)
     {
          src->GenerateAgentsAndAddToPool(src->GetMaxAgents(), _building);
     }
}

486 487 488 489 490 491 492 493 494
void AgentsSourcesManager::AddSource(std::shared_ptr<AgentsSource> src)
{
     _sources.push_back(src);
}

const std::vector<std::shared_ptr<AgentsSource> >& AgentsSourcesManager::GetSources() const
{
     return _sources;
}
495 496 497

void AgentsSourcesManager::SetBuilding(Building* building)
{
498
     _building = building;
499
}
500 501 502

bool AgentsSourcesManager::IsCompleted() const
{
503
     return _isCompleted;
504
}
505 506 507 508 509 510


Building* AgentsSourcesManager::GetBuilding() const
{
     return _building;
}