AgentsSourcesManager.cpp 25.8 KB
Newer Older
1 2 3
/**
 * \file        AgentsSourcesManager.cpp
 * \date        Apr 14, 2015
4
 * \version     v0.7
5
 * \copyright   <2009-2015> Forschungszentrum J��lich GmbH. All rights reserved.
6
 *
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * \section License
 * This file is part of JuPedSim.
 *
 * JuPedSim is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * any later version.
 *
 * JuPedSim is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with JuPedSim. If not, see <http://www.gnu.org/licenses/>.
 *
 * \section Description
 * This class is responsible for materialising agent in a given location at a given frequency up to a maximum number.
 * The optimal position where to put the agents is given by various algorithms, for instance
 * the Voronoi algorithm or the Mitchell Best candidate algorithm.
 *
 **/
29 30 31

#include "AgentsSourcesManager.h"
#include "Pedestrian.h"
32 33
#include "StartDistribution.h"
#include "PedDistributor.h"
34
#include "AgentsSource.h"
35
//#include "../voronoi/VoronoiDiagramGenerator.h"
36
#include "../geometry/Building.h"
37 38
#include "../geometry/Point.h"

39
#include "../mpi/LCGrid.h"
40 41 42
#include <iostream>
#include <thread>
#include <chrono>
43
#include "AgentsQueue.h"
44

45

46 47 48 49 50 51 52
//a.brkic begin
#include "../geometry/SubRoom.h"
#include <stdlib.h>
#include <time.h>
#include <string>
#include <random>

53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
#include "boost/polygon/voronoi.hpp"
using boost::polygon::voronoi_builder;
using boost::polygon::voronoi_diagram;
using boost::polygon::x;
using boost::polygon::y;
using boost::polygon::low;
using boost::polygon::high;


//wrapping the boost objects
namespace boost {
namespace polygon {
	template <>
	struct geometry_concept<Point> {
	  typedef point_concept type;
	};

	template <>
	struct point_traits<Point> {
	  typedef int coordinate_type;

	  static inline coordinate_type get(
		  const Point& point, orientation_2d orient) {
		return (orient == HORIZONTAL) ? point._x : point._y;
	  }
	};
}  // polygon
}  // boost

82
//a.brkic end
83

84 85
using namespace std;

86
bool AgentsSourcesManager::_isCompleted=true;
87

88 89 90 91 92 93 94 95
AgentsSourcesManager::AgentsSourcesManager()
{
}

AgentsSourcesManager::~AgentsSourcesManager()
{
}

96
void AgentsSourcesManager::operator()()
97
{
98
     Run();
99
}
100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
void AgentsSourcesManager::Run()
{
     Log->Write("INFO:\tStarting agent manager thread");

     //Generate all agents required for the complete simulation
     //It might be more efficient to generate at each frequency step
     for (const auto& src : _sources)
     {
          src->GenerateAgentsAndAddToPool(src->GetMaxAgents(), _building);
     }

     //first call ignoring the return value
     ProcessAllSources();

     //the loop is updated each x second.
     //it might be better to use a timer
     _isCompleted = false;
     bool finished = false;
119
     long updateFrequency = 4;     // 1 = second
120 121 122 123 124 125 126 127 128 129 130
     do
     {
          int current_time = Pedestrian::GetGlobalTime();

          if ((current_time != _lastUpdateTime)
                    && ((current_time % updateFrequency) == 0))
          {
               finished=ProcessAllSources();
               _lastUpdateTime = current_time;
          }
          //wait some time
131
         // std::this_thread::sleep_for(std::chrono::milliseconds(1));
132 133
     } while (!finished);
     Log->Write("INFO:\tTerminating agent manager thread");
134
     _isCompleted = true;
135 136 137
}

bool AgentsSourcesManager::ProcessAllSources() const
138 139 140 141 142 143
{
     bool empty=true;
     for (const auto& src : _sources)
     {
          if (src->GetPoolSize())
          {
144 145 146 147 148 149 150 151
        	  auto dist = src->GetStartDistribution();
        	  int roomID = dist->GetRoomId();
        	  int subroomID = dist->GetSubroomID();
        	  SubRoom* subroom=(_building->GetRoom( roomID ))->GetSubRoom(subroomID);
        	  subroom->SetHelpVariables();


        	   vector<Pedestrian*> peds;
152
               src->RemoveAgentsFromPool(peds,src->GetFrequency());
Ulrich Kemloh's avatar
Ulrich Kemloh committed
153
               Log->Write("INFO:\tSource %d generating %d agents (%d remaining)",src->GetId(),peds.size(),src->GetPoolSize());
154

155
               //ComputeBestPositionRandom(src.get(), peds);
156
               //todo: compute the optimal position for insertion using voronoi
157 158
               if( !ComputeBestPositionVoronoiBoost(src.get(), peds) )
            	   Log->Write("INFO:\t there was no place for some pedestrians");
159
               //ComputeBestPositionDummy( src.get(), peds );
160 161 162 163 164
               /*for (auto&& ped : peds)
               {
               ComputeBestPositionVoronoiBoost(src.get(), ped);
               //ped->Dump(ped->GetID(),0);
               }*/
165
               AgentsQueueIn::Add(peds);
166 167 168 169 170
               empty = false;
          }
          //src->Dump();//exit(0);
     }
     return empty;
171
}
172 173 174 175 176

//4 agents frequency, just for an example
void AgentsSourcesManager::ComputeBestPositionDummy(AgentsSource* src,
          vector<Pedestrian*>& peds)const
{
177 178 179 180 181 182 183 184
	peds[0]->SetPos( Point(10,5.5) );
	peds[1]->SetPos( Point(10,4.9) );
	peds[2]->SetPos( Point(10,4.3) );
	peds[3]->SetPos( Point(10,3.7) );

	/*peds[0]->SetPos( Point(10,5.4) );
	peds[1]->SetPos( Point(10,4.6) );
	peds[2]->SetPos( Point(10,3.8) );*/
185 186 187 188 189 190 191 192 193

	for(auto&& ped : peds)
	{
		Point v = (ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
		double speed=ped->GetV0Norm();
		v=v*speed;
		ped->SetV(v);
	}
}
194
/*
195
void AgentsSourcesManager::ComputeBestPositionVoronoi(AgentsSource* src,
196
          Pedestrian* agent) const
197
{
198 199 200 201 202
     auto dist = src->GetStartDistribution();
     double bounds[4];
     dist->Getbounds(bounds);
     int roomID = dist->GetRoomId();
     int subroomID = dist->GetSubroomID();
203 204 205

     //Get all pedestrians in that location
     vector<Pedestrian*> peds;
206
     _building->GetPedestrians(roomID, subroomID, peds);
207

208
     //filter the points that are not within the boundaries
209 210 211 212 213 214 215
     for (auto&& iter = peds.begin(); iter != peds.end();)
     {
          const Point& pos = (*iter)->GetPos();
          if ((bounds[0] <= pos._x && pos._x <= bounds[1])
                    && (bounds[1] <= pos._y && pos._y <= bounds[2]))
          {
               iter = peds.erase(iter);
Ulrich Kemloh's avatar
Ulrich Kemloh committed
216
               cout << "removing (testing only)..." << endl;
217
               exit(0);
218
          } else
219 220 221 222 223 224 225 226
          {
               ++iter;
          }
     }

     //special case with 1, 2 or only three pedestrians in the area
     if (peds.size() < 3)
     {
227 228
          //TODO/random position in the area
          return;
229 230

     }
231
     // compute the cells and cut with the bounds
232
     const int count = peds.size();
233 234
     float* xValues = new float[count];
     float* yValues = new float[count];
235 236
     //float xValues[count];
     //float yValues[count];
237

238
     for (int i = 0; i < count; i++)
239
     {
240 241
          xValues[i] = peds[i]->GetPos()._x;
          yValues[i] = peds[i]->GetPos()._y;
242 243 244
     }

     VoronoiDiagramGenerator vdg;
245 246
     vdg.generateVoronoi(xValues, yValues, count, bounds[0], bounds[1],
               bounds[2], bounds[3], 3);
247 248 249 250
     vdg.resetIterator();
     vdg.resetVerticesIterator();

     printf("\n------vertices---------\n");
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
     //collect the positions
     vector<Point> positions;
     float x1, y1;
     while (vdg.getNextVertex(x1, y1))
     {
          printf("GOT Point (%f,%f)\n", x1, y1);
          positions.push_back(Point(x1, y1));
     }

     //look for the biggest spot
     map<double, Point> map_dist_to_position;

     for (auto&& pos : positions)
     {
          double min_dist = FLT_MAX;

          for (auto&& ped : peds)
          {
               double dist = (pos - ped->GetPos()).NormSquare();
               if (dist < min_dist)
               {
                    min_dist = dist;
               }
          }
          map_dist_to_position[min_dist] = pos;
     }

     //list the result
     for (auto&& mp : map_dist_to_position)
280
     {
281
          cout << "dist: " << mp.first << " pos: " << mp.second.toString()
282
                                        << endl;
283
          //agent->SetPos(mp.second, true);
284 285
     }

286 287 288 289 290 291 292
     //the elements are ordered.
     // so the last one has the largest distance
     if (!map_dist_to_position.empty())
     {
          agent->SetPos(map_dist_to_position.rbegin()->second, true);
          cout << "position:" << agent->GetPos().toString() << endl;
          //exit(0);
293

294
     } else
295 296 297
     {
          cout << "position not set:" << endl;
          cout << "size: " << map_dist_to_position.size() << endl;
298
          cout << " for " << peds.size() << " pedestrians" << endl;
299 300
          exit(0);
     }
301 302 303 304 305 306 307 308
     //exit(0);
     // float x1,y1,x2,y2;
     //while(vdg.getNext(x1,y1,x2,y2))
     //{
     //     printf("GOT Line (%f,%f)->(%f,%f)\n",x1,y1,x2, y2);
     //
     //}
     //compute the best position
309
     //exit(0);
310
}
311 312
*/

313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
bool AgentsSourcesManager::IsEnoughInSubroom( SubRoom* subroom, Point& pt ) const
{
	vector<Wall> walls = subroom->GetAllWalls();
	bool return_value = true;
	double radius = 0.4; //radius of a person

	for(unsigned int i=0; i<walls.size(); i++)
		if ( walls[i].DistTo(pt) < radius )
		{
			return_value = false;
			break;
		}

	return return_value;
}

bool AgentsSourcesManager::ComputeBestPositionVoronoiBoost(AgentsSource* src,
330 331
		std::vector<Pedestrian*>& peds) const
{
332
	bool return_value = true;
333 334 335 336 337 338 339 340 341
	auto dist = src->GetStartDistribution();
	int roomID = dist->GetRoomId();
	int subroomID = dist->GetSubroomID();
	std::string caption = (_building->GetRoom( roomID ))->GetCaption();
	double radius = 0.4; //DO: change! radius of a person

	std::vector<Pedestrian*> existing_peds;
	_building->GetPedestrians(roomID, subroomID, existing_peds);

342 343 344 345
	SubRoom* subroom = (_building->GetRoom( roomID ))->GetSubRoom(subroomID);
	vector<Point> room_vertices = subroom->GetPolygon();

	double factor = 100;  //factor for conversion to integer for the boost voronoi
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360
	vector<Point> fake_peds;  //doing this now so I don't have to do it in every loop
	Point temp(0,0);
	for (unsigned int i=0; i<room_vertices.size(); i++ )
	{
		Point center_pos = subroom->GetCentroid();
		temp.SetX( center_pos.GetX()-room_vertices[i].GetX( ) );
		temp.SetY( center_pos.GetY()-room_vertices[i].GetY( ) );
		temp = temp/sqrt(temp.NormSquare());
		temp = temp*(radius*1.4);  //now the norm of the vector is ~r*sqrt(2), pointing to the center
		temp = temp + room_vertices[i];
		temp.SetX( (int)(temp.GetX()*factor) );
		temp.SetY( (int)(temp.GetY()*factor) );
		fake_peds.push_back( temp );
	}
361 362 363 364 365 366

	for(auto&& ped : peds)
	{
		if(existing_peds.size() == 0 )
		{

367
			Point center_pos = subroom->GetCentroid();
368 369

			srand (time(NULL));
370 371 372
			double x_coor = 3 * ( (double)rand() / (double)RAND_MAX ) - 1.5;
			double y_coor = 3 * ( (double)rand() / (double)RAND_MAX ) - 1.5;
			Point random_pos(x_coor, y_coor);
373
			Point new_pos = center_pos + random_pos;
374

375
			if ( subroom->IsInSubRoom( new_pos ) )
376
			{
377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
				if( IsEnoughInSubroom(subroom, new_pos ) )
				{
					ped->SetPos(center_pos + random_pos, true);
					Point v = (ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
					double speed=ped->GetV0Norm();
					v=v*speed;
					ped->SetV(v);
				}
				else
				{
					ped->SetPos(center_pos, true);
					Point v = (ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
					double speed=ped->GetV0Norm();
					v=v*speed;
					ped->SetV(v);
				}
393 394 395
			}
			else
			{
396
				ped->SetPos(center_pos, true);
397
				Point v = (ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
398 399 400 401 402 403
				double speed=ped->GetV0Norm();
				v=v*speed;
				ped->SetV(v);
			}


404
		}//0
405 406 407 408 409 410
		else
		{
			std::vector<Point> discrete_positions;
			std::vector<Point> velocities_vector;

			Point temp(0,0);
411 412 413
			Point v(0,0);
			double no = 0;

414 415 416 417 418 419 420 421
			//points from double to integer
			for (auto&& iter = existing_peds.begin(); iter != existing_peds.end(); ++iter)
			{
				const Point& pos = (*iter)->GetPos();
				temp.SetX( (int)( pos.GetX()*factor ) );
				temp.SetY( (int)( pos.GetY()*factor ) );
				discrete_positions.push_back( temp );
				velocities_vector.push_back( (*iter)->GetV() );
422 423 424 425 426 427 428 429 430 431 432 433 434

				//calculating the mean, using it for the fake pedestrians
				v = v + (*iter)->GetV();
				no++;
			}

			v = v/no; //this is the mean of all the velocities

			//adding fake people to the voronoi diagram
			for (unsigned int i=0; i<room_vertices.size(); i++ )
			{
				discrete_positions.push_back( fake_peds[i] );
				velocities_vector.push_back( v ); //DO: what speed?
435 436 437 438 439 440
			}

			//constructing the diagram
			voronoi_diagram<double> vd;
			construct_voronoi(discrete_positions.begin(), discrete_positions.end(), &vd);

441 442 443
			voronoi_diagram<double>::const_vertex_iterator chosen_it = vd.vertices().begin();
			double dis = 0;
			VoronoiBestVertexMax(discrete_positions, vd, subroom, factor, chosen_it, dis);
444

445
			if( dis > radius*factor*radius*factor)// be careful with the factor!! radius*factor
446
			{
447
				Point pos( chosen_it->x()/factor, chosen_it->y()/factor ); //check!
448
				ped->SetPos(pos , true);
449 450
				VoronoiAdjustVelocityNeighbour( vd, chosen_it, ped, velocities_vector );
			}
451
			else //try with the maximum distance, don't need this if already using the VoronoiBestVertexMax function
452 453 454 455 456 457 458 459
			{
				VoronoiBestVertexMax(discrete_positions, vd, subroom, factor, chosen_it, dis );
				if( dis > radius*factor*radius*factor)// be careful with the factor!! radius*factor
				{
					Point pos( chosen_it->x()/factor, chosen_it->y()/factor ); //check!
					ped->SetPos(pos , true);
					VoronoiAdjustVelocityNeighbour( vd, chosen_it, ped, velocities_vector );
				}
460 461 462 463 464 465
				else
				{
					return_value = false;
					//reject the pedestrian
				}
			}
466
		}// >0
467

468
		existing_peds.push_back(ped);
469
	}//for loop
470 471

	return return_value;
472 473 474
}

//gives an agent the mean velocity of his voronoi-neighbors
475
void AgentsSourcesManager::VoronoiAdjustVelocityNeighbour( const voronoi_diagram<double>& vd, voronoi_diagram<double>::const_vertex_iterator& chosen_it,
476 477 478 479 480 481
			Pedestrian* ped, const std::vector<Point>& velocities_vector ) const
{
	//finding the neighbors (nearest pedestrians) of the chosen vertex
	const voronoi_diagram<double>::vertex_type &vertex = *chosen_it;
	const voronoi_diagram<double>::edge_type *edge = vertex.incident_edge();
	double sum_x=0, sum_y=0;
482
	double no=0;
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
	std::size_t index;

	do
	{
		no++;
		index = ( edge->cell() )->source_index();
		const Point& v = velocities_vector[index];
		sum_x += v.GetX();
		sum_y += v.GetY();
		edge = edge->rot_next();
	} while (edge != vertex.incident_edge());

	Point v(sum_x/no, sum_y/no);
	ped->SetV(v);

498 499 500
}

//gives the voronoi vertex with max distance
501 502
void AgentsSourcesManager::VoronoiBestVertexMax (const std::vector<Point>& discrete_positions, const voronoi_diagram<double>& vd, SubRoom* subroom,
		double factor, voronoi_diagram<double>::const_vertex_iterator& max_it, double& max_dis	) const
503 504 505 506
{
	double dis = 0;
	for (voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it)
	{
507
		Point vert_pos( it->x()/factor, it->y()/factor );
508 509 510 511 512
		if( subroom->IsInSubRoom(vert_pos) )
			if( IsEnoughInSubroom( subroom, vert_pos ) )
			{
				const voronoi_diagram<double>::vertex_type &vertex = *it;
				const voronoi_diagram<double>::edge_type *edge = vertex.incident_edge();
513

514 515
				std::size_t index = ( edge->cell() )->source_index();
				Point p = discrete_positions[index];
516

517 518 519 520 521 522
				dis = ( p.GetX() - it->x() )*( p.GetX() - it->x() )  + ( p.GetY() - it->y() )*( p.GetY() - it->y() )  ;
				if(dis > max_dis)
				{
					max_dis = dis;
					max_it = it;
				}
523 524
			}
	}
525
	//at the end, max_it is the choosen vertex, or the first vertex - max_dis=0 assures that this position will not be taken
526 527
}

528
//gives random voronoi vertex but with weights proportional to squared distances
529 530
void AgentsSourcesManager::VoronoiBestVertexRandMax (const std::vector<Point>& discrete_positions, const voronoi_diagram<double>& vd, SubRoom* subroom,
		double factor, voronoi_diagram<double>::const_vertex_iterator& chosen_it, double& dis	) const
531 532 533 534 535 536 537 538
{
	std::vector< voronoi_diagram<double>::const_vertex_iterator > possible_vertices;
	vector<double> partial_sums;
	unsigned int size;

	for (voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it)
	{
		Point vert_pos = Point( it->x()/factor, it->y()/factor );
539 540 541 542 543
		if( subroom->IsInSubRoom( vert_pos ) )
			if( IsEnoughInSubroom(subroom, vert_pos) )
			{
				const voronoi_diagram<double>::vertex_type &vertex = *it;
				const voronoi_diagram<double>::edge_type *edge = vertex.incident_edge();
544

545 546
				std::size_t index = ( edge->cell() )->source_index();
				Point p = discrete_positions[index];
547

548
				dis = ( p.GetX() - it->x() )*( p.GetX() - it->x() )   + ( p.GetY() - it->y() )*( p.GetY() - it->y() )  ;
549

550 551
				possible_vertices.push_back( it );
				partial_sums.push_back( dis );
552

553 554 555 556 557
				size = partial_sums.size();
				if( size > 1 )
				{
					partial_sums[ size - 1 ] += partial_sums[ size - 2 ];
				}
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
			}
	}
	//now we have the vector of possible vertices and weights and we can choose one randomly

	double lower_bound = 0;
	double upper_bound = partial_sums[size-1];
	std::uniform_real_distribution<double> unif(lower_bound,upper_bound);
	std::default_random_engine re;
	double a_random_double = unif(re);

	for (unsigned int i=0; i<size; i++)
	{
		if ( partial_sums[i] >= a_random_double )
		{
			//this is the chosen index
			chosen_it = possible_vertices[i];
			dis = partial_sums[i];
			if( i > 1 )
				dis -= partial_sums[i-1];
			break;
		}
	}

}

583
//gives a random voronoi vertex
584 585
void AgentsSourcesManager::VoronoiBestVertexRand (const std::vector<Point>& discrete_positions, const voronoi_diagram<double>& vd, SubRoom* subroom,
		double factor, voronoi_diagram<double>::const_vertex_iterator& chosen_it, double& dis	) const
586 587 588 589 590 591 592
{
	std::vector< voronoi_diagram<double>::const_vertex_iterator > possible_vertices;
	std::vector<double> distances;

	for (voronoi_diagram<double>::const_vertex_iterator it = vd.vertices().begin(); it != vd.vertices().end(); ++it)
	{
		Point vert_pos = Point( it->x()/factor, it->y()/factor );
593 594 595 596 597
		if( subroom->IsInSubRoom(vert_pos) )
			if( IsEnoughInSubroom(subroom, vert_pos) )
			{
				const voronoi_diagram<double>::vertex_type &vertex = *it;
				const voronoi_diagram<double>::edge_type *edge = vertex.incident_edge();
598

599 600
				std::size_t index = ( edge->cell() )->source_index();
				Point p = discrete_positions[index];
601

602
				dis = ( p.GetX() - it->x() )*( p.GetX() - it->x() )   + ( p.GetY() - it->y() )*( p.GetY() - it->y() )  ;
603

604 605 606
				possible_vertices.push_back( it );
				distances.push_back( dis );
			}
607 608 609 610 611 612 613 614 615 616
	}
	//now we have all the possible vertices and their distances and we can choose one randomly

	srand (time(NULL));
	unsigned int i = rand() % possible_vertices.size();
	chosen_it = possible_vertices[i];
	dis = distances[i];

}

617

618
void AgentsSourcesManager::ComputeBestPositionRandom(AgentsSource* src,
619
          std::vector<Pedestrian*>& peds) const
620 621 622
{

     //generate the agents with default positions
623 624 625 626 627
     auto dist = src->GetStartDistribution();
     auto subroom = _building->GetRoom(dist->GetRoomId())->GetSubRoom(
               dist->GetSubroomID());
     vector<Point> positions = PedDistributor::PossiblePositions(*subroom);
     double bounds[4] = { 0, 0, 0, 0 };
628 629
     dist->Getbounds(bounds);

630 631
     vector<Point> extra_positions;

632
     for (auto& ped : peds)
633
     {
634 635 636
          //need to be called at each iteration
          SortPositionByDensity(positions, extra_positions);

637 638 639
          int index = -1;

          //in the case a range was specified
640
          //just take the first element
641
          for (unsigned int a = 0; a < positions.size(); a++)
642
          {
643
               Point pos = positions[a];
644
               //cout<<"checking: "<<pos.toString()<<endl;
645 646
               if ((bounds[0] <= pos._x) && (pos._x <= bounds[1])
                         && (bounds[2] <= pos._y) && (pos._y < bounds[3]))
647
               {
648
                    index = a;
649 650 651
                    break;
               }
          }
652
          if (index == -1)
653
          {
654
               if (positions.size())
655
               {
656
                    Log->Write(
657
                              "ERROR:\t AgentSourceManager Cannot distribute pedestrians in the mentioned area [%0.2f,%0.2f,%0.2f,%0.2f]",
658
                              bounds[0], bounds[1], bounds[2], bounds[3]);
659 660 661
                    Log->Write("     \t Specifying a subroom_id might help");
                    Log->Write("     \t %d positions were available",positions.size());
                    exit(EXIT_FAILURE);
662
               }
663 664
          }
          else
665 666
          {
               const Point& pos = positions[index];
667
               extra_positions.push_back(pos);
668
               ped->SetPos(pos, true); //true for the initial position
669 670
               positions.erase(positions.begin() + index);

671
               //at this point we have a position
672 673 674
               //so we can adjust the velocity
               //AdjustVelocityUsingWeidmann(ped);
               AdjustVelocityByNeighbour(ped);
675 676 677
          }
     }
}
678

679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
void AgentsSourcesManager::AdjustVelocityByNeighbour(Pedestrian* ped) const
{
     //get the density
     vector<Pedestrian*> neighbours;
     _building->GetGrid()->GetNeighbourhood(ped,neighbours);

     double speed=0.0;
     double radius_square=0.56*0.56;//corresponding to an area of 1m3
     int count=0;

     for(const auto& p: neighbours)
     {
          //only pedes in a sepcific rance
          if( (ped->GetPos()-p->GetPos()).NormSquare()<=radius_square)
          {
               //only peds with the same destination
               if(ped->GetExitIndex()==p->GetExitIndex())
               {
                    double dist1=ped->GetDistanceToNextTarget();
                    double dist2=p->GetDistanceToNextTarget();
                    //only peds in front of me
                    if(dist2<dist1)
                    {
                         speed+=p->GetV().Norm();
                         count++;
                    }
               }
          }

     }
     //mean speed
     if(count==0)
     {
          speed=ped->GetV0Norm();
     }
     else
     {
          speed=speed/count;
     }

     if(ped->FindRoute()!=-1)
     {
          //get the next destination point
          Point v =(ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
          v=v*speed;
          ped->SetV(v);
     }
     else
     {
          Log->Write("ERROR:\t no route could be found for agent [%d] going to [%d]",ped->GetID(),ped->GetFinalDestination());
          //that will be most probably be fixed in the next computation step.
          // so do not abort
     }

}

735 736 737 738 739 740
void AgentsSourcesManager::AdjustVelocityUsingWeidmann(Pedestrian* ped) const
{
     //get the density
     vector<Pedestrian*> neighbours;
     _building->GetGrid()->GetNeighbourhood(ped,neighbours);

741
     //density in pers per m2
742 743
     double density = 1.0;
     //radius corresponding to a surface of 1m2
744
     //double radius_square=0.564*0.564;
745
     double radius_square=1.0;
746

747 748
     for(const auto& p: neighbours)
     {
749
          if( (ped->GetPos()-p->GetPos()).NormSquare()<=radius_square)
750 751
               density+=1.0;
     }
752 753
     density=density/(radius_square*M_PI);

754 755
     //get the velocity
     double density_max=5.4;
756

757 758 759 760 761 762
     //speed from taken from weidmann FD
     double speed=1.34*(1-exp(-1.913*(1.0/density-1.0/density_max)));
     if(speed>=ped->GetV0Norm())
     {
          speed=ped->GetV0Norm();
     }
763

764 765
     //set the velocity vector
     if(ped->FindRoute()!=-1)
766 767 768 769 770
     {
          //get the next destination point
          Point v =(ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
          v=v*speed;
          ped->SetV(v);
771
          //cout<<"density: "<<density<<endl;
772 773 774 775
     }
     else
     {
          Log->Write("ERROR:\t no route could be found for agent [%d] going to [%d]",ped->GetID(),ped->GetFinalDestination());
776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
          //that will be most probably be fixed in the next computation step.
          // so do not abort
     }

}

void AgentsSourcesManager::SortPositionByDensity(std::vector<Point>& positions, std::vector<Point>& extra_positions) const
{
     std::multimap<double,Point> density2pt;
     //std::map<double,Point> density2pt;

     for(auto&& pt:positions)
     {
          vector<Pedestrian*> neighbours;
          _building->GetGrid()->GetNeighbourhood(pt,neighbours);
          //density in pers per m2
          double density = 0.0;
          double radius_square=0.40*0.40;

          for(const auto& p: neighbours)
          {
               if( (pt-p->GetPos()).NormSquare()<=radius_square)
                    density+=1.0;
          }

          //consider the extra positions
          for(const auto& ptx: extra_positions)
          {
               if( (ptx-pt).NormSquare()<=radius_square)
                    density+=1.0;
          }
          density=density/(radius_square*M_PI);

          density2pt.insert(std::pair<double,Point>(density,pt));

     }

     //cout<<"------------------"<<positions.size()<<"-------"<<endl;
     positions.clear();
     for(auto&& d: density2pt)
     {
          positions.push_back(d.second);
          //     printf("density [%lf, %s]\n",d.first, d.second.toString().c_str());
819
     }
820 821

}
822 823 824 825 826 827 828 829 830 831 832


void AgentsSourcesManager::GenerateAgents()
{

     for (const auto& src : _sources)
     {
          src->GenerateAgentsAndAddToPool(src->GetMaxAgents(), _building);
     }
}

833 834 835
void AgentsSourcesManager::AddSource(std::shared_ptr<AgentsSource> src)
{
     _sources.push_back(src);
836
     _isCompleted=false;//at least one source was provided
837 838 839 840 841 842
}

const std::vector<std::shared_ptr<AgentsSource> >& AgentsSourcesManager::GetSources() const
{
     return _sources;
}
843 844 845

void AgentsSourcesManager::SetBuilding(Building* building)
{
846
     _building = building;
847
}
848 849 850

bool AgentsSourcesManager::IsCompleted() const
{
851
     return _isCompleted;
852
}
853 854 855 856 857 858


Building* AgentsSourcesManager::GetBuilding() const
{
     return _building;
}
859 860 861 862 863 864 865 866 867 868

long AgentsSourcesManager::GetMaxAgentNumber() const
{
     long pop=0;
     for (const auto& src : _sources)
     {
          pop+=src->GetMaxAgents();
     }
     return pop;
}