AgentsSourcesManager.cpp 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * AgentsSourcesManager.cpp
 *
 *  Created on: 14.04.2015
 *      Author: piccolo
 */

#include "AgentsSourcesManager.h"
#include "Pedestrian.h"
10 11
#include "StartDistribution.h"
#include "PedDistributor.h"
12
#include "AgentsSource.h"
13 14
#include "../voronoi/VoronoiDiagramGenerator.h"
#include "../geometry/Building.h"
15 16
#include "../geometry/Point.h"

17

18
#include "../mpi/LCGrid.h"
19 20 21
#include <iostream>
#include <thread>
#include <chrono>
22
#include "AgentsQueue.h"
23 24 25

using namespace std;

26
bool AgentsSourcesManager::_isCompleted=true;
27

28 29 30 31 32 33 34 35
AgentsSourcesManager::AgentsSourcesManager()
{
}

AgentsSourcesManager::~AgentsSourcesManager()
{
}

36
void AgentsSourcesManager::operator()()
37
{
38
     Run();
39
}
40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
void AgentsSourcesManager::Run()
{
     Log->Write("INFO:\tStarting agent manager thread");

     //Generate all agents required for the complete simulation
     //It might be more efficient to generate at each frequency step
     for (const auto& src : _sources)
     {
          src->GenerateAgentsAndAddToPool(src->GetMaxAgents(), _building);
     }

     //first call ignoring the return value
     ProcessAllSources();

     //the loop is updated each x second.
     //it might be better to use a timer
     _isCompleted = false;
     bool finished = false;
     long updateFrequency = 5;     // 1 second
     do
     {
          int current_time = Pedestrian::GetGlobalTime();

          if ((current_time != _lastUpdateTime)
                    && ((current_time % updateFrequency) == 0))
          {
               finished=ProcessAllSources();
               _lastUpdateTime = current_time;
          }
          //wait some time
          //std::this_thread::sleep_for(std::chrono::milliseconds(1));
     } while (!finished);
     Log->Write("INFO:\tTerminating agent manager thread");
74
     _isCompleted = true;
75 76 77
}

bool AgentsSourcesManager::ProcessAllSources() const
78 79 80 81
{
     bool empty=true;
     for (const auto& src : _sources)
     {
Ulrich Kemloh's avatar
Ulrich Kemloh committed
82

83 84 85
          if (src->GetPoolSize())
          {
               vector<Pedestrian*> peds;
86
               src->RemoveAgentsFromPool(peds,src->GetFrequency());
Ulrich Kemloh's avatar
Ulrich Kemloh committed
87
               Log->Write("INFO:\tSource %d generating %d agents (%d remaining)",src->GetId(),peds.size(),src->GetPoolSize());
88

89
               ComputeBestPositionRandom(src.get(), peds);
90 91 92
               //todo: compute the optimal position for insertion using voronoi
               //for (auto&& ped : peds)
               //{
93 94
               //ComputeBestPositionVoronoi(src.get(), ped);
               //ped->Dump(ped->GetID());
95
               //}
96
               AgentsQueueIn::Add(peds);
97 98 99 100 101
               empty = false;
          }
          //src->Dump();//exit(0);
     }
     return empty;
102 103
}

104
void AgentsSourcesManager::ComputeBestPositionVoronoi(AgentsSource* src,
105
          Pedestrian* agent) const
106
{
107 108 109 110 111
     auto dist = src->GetStartDistribution();
     double bounds[4];
     dist->Getbounds(bounds);
     int roomID = dist->GetRoomId();
     int subroomID = dist->GetSubroomID();
112 113 114

     //Get all pedestrians in that location
     vector<Pedestrian*> peds;
115
     _building->GetPedestrians(roomID, subroomID, peds);
116

117
     //filter the points that are not within the boundaries
118 119 120 121 122 123 124
     for (auto&& iter = peds.begin(); iter != peds.end();)
     {
          const Point& pos = (*iter)->GetPos();
          if ((bounds[0] <= pos._x && pos._x <= bounds[1])
                    && (bounds[1] <= pos._y && pos._y <= bounds[2]))
          {
               iter = peds.erase(iter);
Ulrich Kemloh's avatar
Ulrich Kemloh committed
125
               cout << "removing (testing only)..." << endl;
126
               exit(0);
127
          } else
128 129 130 131 132 133 134 135
          {
               ++iter;
          }
     }

     //special case with 1, 2 or only three pedestrians in the area
     if (peds.size() < 3)
     {
136 137
          //TODO/random position in the area
          return;
138 139

     }
140
     // compute the cells and cut with the bounds
141
     const int count = peds.size();
142 143
     float* xValues = new float[count];
     float* yValues = new float[count];
144 145
     //float xValues[count];
     //float yValues[count];
146

147
     for (int i = 0; i < count; i++)
148
     {
149 150
          xValues[i] = peds[i]->GetPos()._x;
          yValues[i] = peds[i]->GetPos()._y;
151 152 153
     }

     VoronoiDiagramGenerator vdg;
154 155
     vdg.generateVoronoi(xValues, yValues, count, bounds[0], bounds[1],
               bounds[2], bounds[3], 3);
156 157 158 159
     vdg.resetIterator();
     vdg.resetVerticesIterator();

     printf("\n------vertices---------\n");
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
     //collect the positions
     vector<Point> positions;
     float x1, y1;
     while (vdg.getNextVertex(x1, y1))
     {
          printf("GOT Point (%f,%f)\n", x1, y1);
          positions.push_back(Point(x1, y1));
     }

     //look for the biggest spot
     map<double, Point> map_dist_to_position;

     for (auto&& pos : positions)
     {
          double min_dist = FLT_MAX;

          for (auto&& ped : peds)
          {
               double dist = (pos - ped->GetPos()).NormSquare();
               if (dist < min_dist)
               {
                    min_dist = dist;
               }
          }
          map_dist_to_position[min_dist] = pos;
     }

     //list the result
     for (auto&& mp : map_dist_to_position)
189
     {
190
          cout << "dist: " << mp.first << " pos: " << mp.second.toString()
191
                                        << endl;
192
          //agent->SetPos(mp.second, true);
193 194
     }

195 196 197 198 199 200 201
     //the elements are ordered.
     // so the last one has the largest distance
     if (!map_dist_to_position.empty())
     {
          agent->SetPos(map_dist_to_position.rbegin()->second, true);
          cout << "position:" << agent->GetPos().toString() << endl;
          //exit(0);
202

203
     } else
204 205 206
     {
          cout << "position not set:" << endl;
          cout << "size: " << map_dist_to_position.size() << endl;
207
          cout << " for " << peds.size() << " pedestrians" << endl;
208 209
          exit(0);
     }
210 211 212 213 214 215 216 217
     //exit(0);
     // float x1,y1,x2,y2;
     //while(vdg.getNext(x1,y1,x2,y2))
     //{
     //     printf("GOT Line (%f,%f)->(%f,%f)\n",x1,y1,x2, y2);
     //
     //}
     //compute the best position
218
     //exit(0);
219 220
}

221
void AgentsSourcesManager::ComputeBestPositionRandom(AgentsSource* src,
222
          std::vector<Pedestrian*>& peds) const
223 224 225
{

     //generate the agents with default positions
226 227 228 229 230
     auto dist = src->GetStartDistribution();
     auto subroom = _building->GetRoom(dist->GetRoomId())->GetSubRoom(
               dist->GetSubroomID());
     vector<Point> positions = PedDistributor::PossiblePositions(*subroom);
     double bounds[4] = { 0, 0, 0, 0 };
231 232
     dist->Getbounds(bounds);

233 234
     vector<Point> extra_positions;

235
     for (auto& ped : peds)
236
     {
237 238 239
          //need to be called at each iteration
          SortPositionByDensity(positions, extra_positions);

240 241 242
          int index = -1;

          //in the case a range was specified
243
          //just take the first element
244
          for (unsigned int a = 0; a < positions.size(); a++)
245
          {
246
               Point pos = positions[a];
247
               //cout<<"checking: "<<pos.toString()<<endl;
248 249
               if ((bounds[0] <= pos._x) && (pos._x <= bounds[1])
                         && (bounds[2] <= pos._y) && (pos._y < bounds[3]))
250
               {
251
                    index = a;
252 253 254
                    break;
               }
          }
255
          if (index == -1)
256
          {
257
               if (positions.size())
258
               {
259
                    Log->Write(
260
                              "ERROR:\t AgentSourceManager Cannot distribute pedestrians in the mentioned area [%0.2f,%0.2f,%0.2f,%0.2f]",
261
                              bounds[0], bounds[1], bounds[2], bounds[3]);
262 263 264
                    Log->Write("     \t Specifying a subroom_id might help");
                    Log->Write("     \t %d positions were available",positions.size());
                    exit(EXIT_FAILURE);
265
               }
266 267
          }
          else
268 269
          {
               const Point& pos = positions[index];
270
               extra_positions.push_back(pos);
271
               ped->SetPos(pos, true); //true for the initial position
272 273
               positions.erase(positions.begin() + index);

274
               //at this point we have a position
275 276 277
               //so we can adjust the velocity
               //AdjustVelocityUsingWeidmann(ped);
               AdjustVelocityByNeighbour(ped);
278 279 280
          }
     }
}
281

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
void AgentsSourcesManager::AdjustVelocityByNeighbour(Pedestrian* ped) const
{
     //get the density
     vector<Pedestrian*> neighbours;
     _building->GetGrid()->GetNeighbourhood(ped,neighbours);

     double speed=0.0;
     double radius_square=0.56*0.56;//corresponding to an area of 1m3
     int count=0;

     for(const auto& p: neighbours)
     {
          //only pedes in a sepcific rance
          if( (ped->GetPos()-p->GetPos()).NormSquare()<=radius_square)
          {
               //only peds with the same destination
               if(ped->GetExitIndex()==p->GetExitIndex())
               {
                    double dist1=ped->GetDistanceToNextTarget();
                    double dist2=p->GetDistanceToNextTarget();
                    //only peds in front of me
                    if(dist2<dist1)
                    {
                         speed+=p->GetV().Norm();
                         count++;
                    }
               }
          }

     }
     //mean speed
     if(count==0)
     {
          speed=ped->GetV0Norm();
     }
     else
     {
          speed=speed/count;
     }

     if(ped->FindRoute()!=-1)
     {
          //get the next destination point
          Point v =(ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
          v=v*speed;
          ped->SetV(v);
     }
     else
     {
          Log->Write("ERROR:\t no route could be found for agent [%d] going to [%d]",ped->GetID(),ped->GetFinalDestination());
          //that will be most probably be fixed in the next computation step.
          // so do not abort
     }

}

338 339 340 341 342 343
void AgentsSourcesManager::AdjustVelocityUsingWeidmann(Pedestrian* ped) const
{
     //get the density
     vector<Pedestrian*> neighbours;
     _building->GetGrid()->GetNeighbourhood(ped,neighbours);

344
     //density in pers per m2
345 346
     double density = 1.0;
     //radius corresponding to a surface of 1m2
347
     //double radius_square=0.564*0.564;
348
     double radius_square=1.0;
349

350 351
     for(const auto& p: neighbours)
     {
352
          if( (ped->GetPos()-p->GetPos()).NormSquare()<=radius_square)
353 354
               density+=1.0;
     }
355 356
     density=density/(radius_square*M_PI);

357 358
     //get the velocity
     double density_max=5.4;
359

360 361 362 363 364 365
     //speed from taken from weidmann FD
     double speed=1.34*(1-exp(-1.913*(1.0/density-1.0/density_max)));
     if(speed>=ped->GetV0Norm())
     {
          speed=ped->GetV0Norm();
     }
366

367 368
     //set the velocity vector
     if(ped->FindRoute()!=-1)
369 370 371 372 373
     {
          //get the next destination point
          Point v =(ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
          v=v*speed;
          ped->SetV(v);
374
          //cout<<"density: "<<density<<endl;
375 376 377 378
     }
     else
     {
          Log->Write("ERROR:\t no route could be found for agent [%d] going to [%d]",ped->GetID(),ped->GetFinalDestination());
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421
          //that will be most probably be fixed in the next computation step.
          // so do not abort
     }

}

void AgentsSourcesManager::SortPositionByDensity(std::vector<Point>& positions, std::vector<Point>& extra_positions) const
{
     std::multimap<double,Point> density2pt;
     //std::map<double,Point> density2pt;

     for(auto&& pt:positions)
     {
          vector<Pedestrian*> neighbours;
          _building->GetGrid()->GetNeighbourhood(pt,neighbours);
          //density in pers per m2
          double density = 0.0;
          double radius_square=0.40*0.40;

          for(const auto& p: neighbours)
          {
               if( (pt-p->GetPos()).NormSquare()<=radius_square)
                    density+=1.0;
          }

          //consider the extra positions
          for(const auto& ptx: extra_positions)
          {
               if( (ptx-pt).NormSquare()<=radius_square)
                    density+=1.0;
          }
          density=density/(radius_square*M_PI);

          density2pt.insert(std::pair<double,Point>(density,pt));

     }

     //cout<<"------------------"<<positions.size()<<"-------"<<endl;
     positions.clear();
     for(auto&& d: density2pt)
     {
          positions.push_back(d.second);
          //     printf("density [%lf, %s]\n",d.first, d.second.toString().c_str());
422
     }
423 424

}
425 426 427 428 429 430 431 432 433 434 435


void AgentsSourcesManager::GenerateAgents()
{

     for (const auto& src : _sources)
     {
          src->GenerateAgentsAndAddToPool(src->GetMaxAgents(), _building);
     }
}

436 437 438
void AgentsSourcesManager::AddSource(std::shared_ptr<AgentsSource> src)
{
     _sources.push_back(src);
439
     _isCompleted=false;//at least one source was provided
440 441 442 443 444 445
}

const std::vector<std::shared_ptr<AgentsSource> >& AgentsSourcesManager::GetSources() const
{
     return _sources;
}
446 447 448

void AgentsSourcesManager::SetBuilding(Building* building)
{
449
     _building = building;
450
}
451 452 453

bool AgentsSourcesManager::IsCompleted() const
{
454
     return _isCompleted;
455
}
456 457 458 459 460 461


Building* AgentsSourcesManager::GetBuilding() const
{
     return _building;
}
462 463 464 465 466 467 468 469 470 471

long AgentsSourcesManager::GetMaxAgentNumber() const
{
     long pop=0;
     for (const auto& src : _sources)
     {
          pop+=src->GetMaxAgents();
     }
     return pop;
}