AgentsSourcesManager.cpp 15.1 KB
Newer Older
1 2 3
/**
 * \file        AgentsSourcesManager.cpp
 * \date        Apr 14, 2015
4
 * \version     v0.7
5
 * \copyright   <2009-2015> Forschungszentrum J��lich GmbH. All rights reserved.
6
 *
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
 * \section License
 * This file is part of JuPedSim.
 *
 * JuPedSim is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Lesser General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * any later version.
 *
 * JuPedSim is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public License
 * along with JuPedSim. If not, see <http://www.gnu.org/licenses/>.
 *
 * \section Description
 * This class is responsible for materialising agent in a given location at a given frequency up to a maximum number.
 * The optimal position where to put the agents is given by various algorithms, for instance
 * the Voronoi algorithm or the Mitchell Best candidate algorithm.
 *
 **/
29 30 31

#include "AgentsSourcesManager.h"
#include "Pedestrian.h"
32 33
#include "StartDistribution.h"
#include "PedDistributor.h"
34
#include "AgentsSource.h"
35
//#include "../voronoi/VoronoiDiagramGenerator.h"
36
#include "../geometry/Building.h"
37 38
#include "../geometry/Point.h"

39
#include "../mpi/LCGrid.h"
40 41 42
#include <iostream>
#include <thread>
#include <chrono>
43
#include "AgentsQueue.h"
44

45
#include "../voronoi-boost/VoronoiPositionGenerator.h"
46

47 48
using namespace std;

49
bool AgentsSourcesManager::_isCompleted=true;
50

51 52 53 54 55 56 57 58
AgentsSourcesManager::AgentsSourcesManager()
{
}

AgentsSourcesManager::~AgentsSourcesManager()
{
}

59
void AgentsSourcesManager::operator()()
60
{
61
     Run();
62
}
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
void AgentsSourcesManager::Run()
{
     Log->Write("INFO:\tStarting agent manager thread");

     //Generate all agents required for the complete simulation
     //It might be more efficient to generate at each frequency step
     for (const auto& src : _sources)
     {
          src->GenerateAgentsAndAddToPool(src->GetMaxAgents(), _building);
     }

     //first call ignoring the return value
     ProcessAllSources();

     //the loop is updated each x second.
     //it might be better to use a timer
     _isCompleted = false;
     bool finished = false;
82
     long updateFrequency = 3;     // 1 = second
83 84 85 86 87 88 89 90 91 92 93
     do
     {
          int current_time = Pedestrian::GetGlobalTime();

          if ((current_time != _lastUpdateTime)
                    && ((current_time % updateFrequency) == 0))
          {
               finished=ProcessAllSources();
               _lastUpdateTime = current_time;
          }
          //wait some time
94
         // std::this_thread::sleep_for(std::chrono::milliseconds(1));
95 96
     } while (!finished);
     Log->Write("INFO:\tTerminating agent manager thread");
97
     _isCompleted = true;
98 99 100
}

bool AgentsSourcesManager::ProcessAllSources() const
101 102 103 104 105 106
{
     bool empty=true;
     for (const auto& src : _sources)
     {
          if (src->GetPoolSize())
          {
107
        	   vector<Pedestrian*> peds;
108
               src->RemoveAgentsFromPool(peds,src->GetFrequency());
Ulrich Kemloh's avatar
Ulrich Kemloh committed
109
               Log->Write("INFO:\tSource %d generating %d agents (%d remaining)",src->GetId(),peds.size(),src->GetPoolSize());
110

111
               //ComputeBestPositionRandom(src.get(), peds);
112
               //todo: compute the optimal position for insertion using voronoi
113
               if( !ComputeBestPositionVoronoiBoost(src.get(), peds, _building) )
114
            	   Log->Write("INFO:\t there was no place for some pedestrians");
115
               //ComputeBestPositionDummy( src.get(), peds );
116 117 118 119 120
               /*for (auto&& ped : peds)
               {
               ComputeBestPositionVoronoiBoost(src.get(), ped);
               //ped->Dump(ped->GetID(),0);
               }*/
121
               AgentsQueueIn::Add(peds);
122 123 124 125 126
               empty = false;
          }
          //src->Dump();//exit(0);
     }
     return empty;
127
}
128 129 130 131 132

//4 agents frequency, just for an example
void AgentsSourcesManager::ComputeBestPositionDummy(AgentsSource* src,
          vector<Pedestrian*>& peds)const
{
133 134 135 136 137 138 139 140
	peds[0]->SetPos( Point(10,5.5) );
	peds[1]->SetPos( Point(10,4.9) );
	peds[2]->SetPos( Point(10,4.3) );
	peds[3]->SetPos( Point(10,3.7) );

	/*peds[0]->SetPos( Point(10,5.4) );
	peds[1]->SetPos( Point(10,4.6) );
	peds[2]->SetPos( Point(10,3.8) );*/
141 142 143 144 145 146 147 148 149

	for(auto&& ped : peds)
	{
		Point v = (ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
		double speed=ped->GetV0Norm();
		v=v*speed;
		ped->SetV(v);
	}
}
150
/*
151
void AgentsSourcesManager::ComputeBestPositionVoronoi(AgentsSource* src,
152
          Pedestrian* agent) const
153
{
154 155 156 157 158
     auto dist = src->GetStartDistribution();
     double bounds[4];
     dist->Getbounds(bounds);
     int roomID = dist->GetRoomId();
     int subroomID = dist->GetSubroomID();
159 160 161

     //Get all pedestrians in that location
     vector<Pedestrian*> peds;
162
     _building->GetPedestrians(roomID, subroomID, peds);
163

164
     //filter the points that are not within the boundaries
165 166 167 168 169 170 171
     for (auto&& iter = peds.begin(); iter != peds.end();)
     {
          const Point& pos = (*iter)->GetPos();
          if ((bounds[0] <= pos._x && pos._x <= bounds[1])
                    && (bounds[1] <= pos._y && pos._y <= bounds[2]))
          {
               iter = peds.erase(iter);
Ulrich Kemloh's avatar
Ulrich Kemloh committed
172
               cout << "removing (testing only)..." << endl;
173
               exit(0);
174
          } else
175 176 177 178 179 180 181 182
          {
               ++iter;
          }
     }

     //special case with 1, 2 or only three pedestrians in the area
     if (peds.size() < 3)
     {
183 184
          //TODO/random position in the area
          return;
185 186

     }
187
     // compute the cells and cut with the bounds
188
     const int count = peds.size();
189 190
     float* xValues = new float[count];
     float* yValues = new float[count];
191 192
     //float xValues[count];
     //float yValues[count];
193

194
     for (int i = 0; i < count; i++)
195
     {
196 197
          xValues[i] = peds[i]->GetPos()._x;
          yValues[i] = peds[i]->GetPos()._y;
198 199 200
     }

     VoronoiDiagramGenerator vdg;
201 202
     vdg.generateVoronoi(xValues, yValues, count, bounds[0], bounds[1],
               bounds[2], bounds[3], 3);
203 204 205 206
     vdg.resetIterator();
     vdg.resetVerticesIterator();

     printf("\n------vertices---------\n");
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
     //collect the positions
     vector<Point> positions;
     float x1, y1;
     while (vdg.getNextVertex(x1, y1))
     {
          printf("GOT Point (%f,%f)\n", x1, y1);
          positions.push_back(Point(x1, y1));
     }

     //look for the biggest spot
     map<double, Point> map_dist_to_position;

     for (auto&& pos : positions)
     {
          double min_dist = FLT_MAX;

          for (auto&& ped : peds)
          {
               double dist = (pos - ped->GetPos()).NormSquare();
               if (dist < min_dist)
               {
                    min_dist = dist;
               }
          }
          map_dist_to_position[min_dist] = pos;
     }

     //list the result
     for (auto&& mp : map_dist_to_position)
236
     {
237
          cout << "dist: " << mp.first << " pos: " << mp.second.toString()
238
                                        << endl;
239
          //agent->SetPos(mp.second, true);
240 241
     }

242 243 244 245 246 247 248
     //the elements are ordered.
     // so the last one has the largest distance
     if (!map_dist_to_position.empty())
     {
          agent->SetPos(map_dist_to_position.rbegin()->second, true);
          cout << "position:" << agent->GetPos().toString() << endl;
          //exit(0);
249

250
     } else
251 252 253
     {
          cout << "position not set:" << endl;
          cout << "size: " << map_dist_to_position.size() << endl;
254
          cout << " for " << peds.size() << " pedestrians" << endl;
255 256
          exit(0);
     }
257 258 259 260 261 262 263 264
     //exit(0);
     // float x1,y1,x2,y2;
     //while(vdg.getNext(x1,y1,x2,y2))
     //{
     //     printf("GOT Line (%f,%f)->(%f,%f)\n",x1,y1,x2, y2);
     //
     //}
     //compute the best position
265
     //exit(0);
266
}
267 268
*/

269

270

271
void AgentsSourcesManager::ComputeBestPositionRandom(AgentsSource* src,
272
          std::vector<Pedestrian*>& peds) const
273 274 275
{

     //generate the agents with default positions
276 277 278 279 280
     auto dist = src->GetStartDistribution();
     auto subroom = _building->GetRoom(dist->GetRoomId())->GetSubRoom(
               dist->GetSubroomID());
     vector<Point> positions = PedDistributor::PossiblePositions(*subroom);
     double bounds[4] = { 0, 0, 0, 0 };
281 282
     dist->Getbounds(bounds);

283 284
     vector<Point> extra_positions;

285
     for (auto& ped : peds)
286
     {
287 288 289
          //need to be called at each iteration
          SortPositionByDensity(positions, extra_positions);

290 291 292
          int index = -1;

          //in the case a range was specified
293
          //just take the first element
294
          for (unsigned int a = 0; a < positions.size(); a++)
295
          {
296
               Point pos = positions[a];
297
               //cout<<"checking: "<<pos.toString()<<endl;
298 299
               if ((bounds[0] <= pos._x) && (pos._x <= bounds[1])
                         && (bounds[2] <= pos._y) && (pos._y < bounds[3]))
300
               {
301
                    index = a;
302 303 304
                    break;
               }
          }
305
          if (index == -1)
306
          {
307
               if (positions.size())
308
               {
309
                    Log->Write(
310
                              "ERROR:\t AgentSourceManager Cannot distribute pedestrians in the mentioned area [%0.2f,%0.2f,%0.2f,%0.2f]",
311
                              bounds[0], bounds[1], bounds[2], bounds[3]);
312 313 314
                    Log->Write("     \t Specifying a subroom_id might help");
                    Log->Write("     \t %d positions were available",positions.size());
                    exit(EXIT_FAILURE);
315
               }
316 317
          }
          else
318 319
          {
               const Point& pos = positions[index];
320
               extra_positions.push_back(pos);
321
               ped->SetPos(pos, true); //true for the initial position
322 323
               positions.erase(positions.begin() + index);

324
               //at this point we have a position
325 326 327
               //so we can adjust the velocity
               //AdjustVelocityUsingWeidmann(ped);
               AdjustVelocityByNeighbour(ped);
328 329 330
          }
     }
}
331

332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
void AgentsSourcesManager::AdjustVelocityByNeighbour(Pedestrian* ped) const
{
     //get the density
     vector<Pedestrian*> neighbours;
     _building->GetGrid()->GetNeighbourhood(ped,neighbours);

     double speed=0.0;
     double radius_square=0.56*0.56;//corresponding to an area of 1m3
     int count=0;

     for(const auto& p: neighbours)
     {
          //only pedes in a sepcific rance
          if( (ped->GetPos()-p->GetPos()).NormSquare()<=radius_square)
          {
               //only peds with the same destination
               if(ped->GetExitIndex()==p->GetExitIndex())
               {
                    double dist1=ped->GetDistanceToNextTarget();
                    double dist2=p->GetDistanceToNextTarget();
                    //only peds in front of me
                    if(dist2<dist1)
                    {
                         speed+=p->GetV().Norm();
                         count++;
                    }
               }
          }

     }
     //mean speed
     if(count==0)
     {
          speed=ped->GetV0Norm();
     }
     else
     {
          speed=speed/count;
     }

     if(ped->FindRoute()!=-1)
     {
          //get the next destination point
          Point v =(ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
          v=v*speed;
          ped->SetV(v);
     }
     else
     {
          Log->Write("ERROR:\t no route could be found for agent [%d] going to [%d]",ped->GetID(),ped->GetFinalDestination());
          //that will be most probably be fixed in the next computation step.
          // so do not abort
     }

}

388 389 390 391 392 393
void AgentsSourcesManager::AdjustVelocityUsingWeidmann(Pedestrian* ped) const
{
     //get the density
     vector<Pedestrian*> neighbours;
     _building->GetGrid()->GetNeighbourhood(ped,neighbours);

394
     //density in pers per m2
395 396
     double density = 1.0;
     //radius corresponding to a surface of 1m2
397
     //double radius_square=0.564*0.564;
398
     double radius_square=1.0;
399

400 401
     for(const auto& p: neighbours)
     {
402
          if( (ped->GetPos()-p->GetPos()).NormSquare()<=radius_square)
403 404
               density+=1.0;
     }
405 406
     density=density/(radius_square*M_PI);

407 408
     //get the velocity
     double density_max=5.4;
409

410 411 412 413 414 415
     //speed from taken from weidmann FD
     double speed=1.34*(1-exp(-1.913*(1.0/density-1.0/density_max)));
     if(speed>=ped->GetV0Norm())
     {
          speed=ped->GetV0Norm();
     }
416

417 418
     //set the velocity vector
     if(ped->FindRoute()!=-1)
419 420 421 422 423
     {
          //get the next destination point
          Point v =(ped->GetExitLine()->ShortestPoint(ped->GetPos())- ped->GetPos()).Normalized();
          v=v*speed;
          ped->SetV(v);
424
          //cout<<"density: "<<density<<endl;
425 426 427 428
     }
     else
     {
          Log->Write("ERROR:\t no route could be found for agent [%d] going to [%d]",ped->GetID(),ped->GetFinalDestination());
429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
          //that will be most probably be fixed in the next computation step.
          // so do not abort
     }

}

void AgentsSourcesManager::SortPositionByDensity(std::vector<Point>& positions, std::vector<Point>& extra_positions) const
{
     std::multimap<double,Point> density2pt;
     //std::map<double,Point> density2pt;

     for(auto&& pt:positions)
     {
          vector<Pedestrian*> neighbours;
          _building->GetGrid()->GetNeighbourhood(pt,neighbours);
          //density in pers per m2
          double density = 0.0;
          double radius_square=0.40*0.40;

          for(const auto& p: neighbours)
          {
               if( (pt-p->GetPos()).NormSquare()<=radius_square)
                    density+=1.0;
          }

          //consider the extra positions
          for(const auto& ptx: extra_positions)
          {
               if( (ptx-pt).NormSquare()<=radius_square)
                    density+=1.0;
          }
          density=density/(radius_square*M_PI);

          density2pt.insert(std::pair<double,Point>(density,pt));

     }

     //cout<<"------------------"<<positions.size()<<"-------"<<endl;
     positions.clear();
     for(auto&& d: density2pt)
     {
          positions.push_back(d.second);
          //     printf("density [%lf, %s]\n",d.first, d.second.toString().c_str());
472
     }
473 474

}
475 476 477 478 479 480 481 482 483 484 485


void AgentsSourcesManager::GenerateAgents()
{

     for (const auto& src : _sources)
     {
          src->GenerateAgentsAndAddToPool(src->GetMaxAgents(), _building);
     }
}

486 487 488
void AgentsSourcesManager::AddSource(std::shared_ptr<AgentsSource> src)
{
     _sources.push_back(src);
489
     _isCompleted=false;//at least one source was provided
490 491 492 493 494 495
}

const std::vector<std::shared_ptr<AgentsSource> >& AgentsSourcesManager::GetSources() const
{
     return _sources;
}
496 497 498

void AgentsSourcesManager::SetBuilding(Building* building)
{
499
     _building = building;
500
}
501 502 503

bool AgentsSourcesManager::IsCompleted() const
{
504
     return _isCompleted;
505
}
506 507 508 509 510 511


Building* AgentsSourcesManager::GetBuilding() const
{
     return _building;
}
512 513 514 515 516 517 518 519 520 521

long AgentsSourcesManager::GetMaxAgentNumber() const
{
     long pop=0;
     for (const auto& src : _sources)
     {
          pop+=src->GetMaxAgents();
     }
     return pop;
}